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Hosts are often infected with multiple strains of a single parasite species.

Within-host competition between parasite strains can be intense and has

implications for the evolution of traits that impact patient health, such as

drug resistance and virulence. Yet the mechanistic basis of within-host com-

petition is poorly understood. Here, we demonstrate that a parasite nutrient,

para-aminobenzoic acid (pABA), mediates competition between a drug

resistant and drug susceptible strain of the malaria parasite, Plasmodium cha-
baudi. We further show that increasing pABA supply to hosts infected with

the resistant strain worsens disease and changes the relationship between

parasite burden and pathology. Our experiments demonstrate that, even

when there is profound top-down regulation (immunity), bottom-up regu-

lation of pathogen populations can occur and that its importance may

vary during an infection. The identification of resources that can be exper-

imentally controlled opens up the opportunity to manipulate competitive

interactions between parasites and hence their evolution.
1. Introduction
Hosts are often infected by multiple parasite ‘strains’—parasites of the same

species that have a different genotype and, often, phenotype [1,2]. In the last

decades, evidence for within-host competition between parasite strains, includ-

ing those of the causative agents of malaria and sleeping sickness, has

accumulated (e.g. [3–9]) and interstrain competition has been implicated as a

driver of the evolution of virulence [10,11], antigenic diversity [12,13] and

drug resistance [14,15]. As recognition of the role that within-host competition

plays in the dynamics and evolution of parasite populations has increased, so

too has interest in harnessing it for the control of parasite populations [16,17].

Yet which aspects of the within-host environment mediate competition between

parasite strains is still poorly understood, limiting our ability to study the role

that competitive interactions play in parasite ecology and evolution and to

manipulate these interactions to our advantage.

Parasites can compete through direct, aggressive interactions or indirectly

through common enemies, such as immune cells, or via the consumption of

shared resources, such as space and nutrients. What mediates intraspecific com-

petition has consequences for disease at both the level of the individual host

[11] and at the population level, since the mechanism of competition may

impact the evolution of virulence [18]. While theoretical studies posit a role

for all three mechanisms of interstrain competition [19–21], only the role of

immune-mediated apparent competition (e.g. [9,22–25]) and interference com-

petition (e.g. [26]) have, so far as we are aware, been investigated empirically

in vivo.

Here, we demonstrate that a nutrient mediates competition between strains

of the rodent malaria parasite Plasmodium chabaudi in mice with a fully intact
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Table 1. Number of mice in each experimental treatment.

pABA treatment

high medium low unsupplemented

single infections (ASpyr alone) 5 (1a) 5 5 (1a) 5

mixed infections (AJ þ ASpyr) 5 (5b) 5 5 (1a) 5
aMice removed from all analyses as they were inoculated with fewer parasites than intended.
bMice died. The dynamics of infections of each individual mouse can be found in the electronic supplementary material, figures S1 and S2.
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immune system and investigate the consequences of resource

abundance and the intensity of within-host competition for

host health. Plasmodium parasites require folate for pyrimi-

dine synthesis and methionine metabolism [27] and, unlike

their mammalian hosts who acquire folate from their diet,

are able to synthesize it from 6-hydroxymethyl-7,8-dihydrop-

terin pyrophosphate and para-aminobenzoic acid (pABA)

[28]. In vivo, pABA limits the growth of several species of

malaria parasites [29–33], including the rodent malaria para-

site P. chabaudi, which is used as a model of human malaria

infection. As a result, experimental animals in studies of

P. chabaudi are routinely supplemented with pABA [34,35].

Here, we investigate the impact of pABA concentration on

the intensity of competition between two genetically distinct

strains of P. chabaudi, AJ and ASpyr. Competition between

these strains is well characterized and asymmetrical: in

mice inoculated with the two strains at the same time, AJ

strongly suppresses ASpyr; ASpyr has little to no effect on AJ

[4,5,36,37]. The pABA requirements of AJ and ASpyr, by con-

trast, have not been studied. We show that the intensity of

competition between these strains of P. chabaudi in the period

before they are cleared by the immune system varies over a gra-

dient of pABA supply and that resource availability changes

the relationship between parasite burden and pathology.
2. Material and methods
Hosts were female six- to eight-week-old C57BL/6 J mice, main-

tained on 5001 Laboratory Rodent Diet (LabDiet, USA). pABA

was administered to mice via drinking water at a concentration

of 0.05% (high treatment), as is standard in experiments invol-

ving rodent malaria [34,35], 0.01% (medium treatment), 0.005%

(low treatment) or 0% (unsupplemented treatment). Ten mice

were assigned to each pABA treatment: five were infected by

intraperitoneal injection with 106 parasites of the pyrimethamine

resistant AS44p strain (hereafter, ASpyr), five with 106 ASpyr and

106 parasites of the pyrimethamine susceptible AJ strain for a

total of eight treatments, each containing five mice as replicates

(table 1). We used a higher total density of parasites in the com-

petition treatment (i.e. an additive experimental design) because

we wanted to determine the change in performance of a focal

strain (ASpyr) when a competitor (AJ) is present [38].

Infections were monitored daily from days 3 to 21

post-inoculation (PI), the period during which parasites are

consistently detectable by quantitative PCR (qPCR) [36]. Each

day, 7 ml of blood was taken from the tail: 2 ml for the imme-

diate quantification of red blood cell (RBC) density via flow

cytometry (Beckman Coulter) and 5 ml for the quantification

of parasite density by qPCR, using methods previously

described [39,40]. The 5 ml blood sample was centrifuged at

13 000g for 1 min, the supernatant removed, and the remaining
blood pellet stored in citrate saline at 2808C, prior to analysis.

As an additional measure of morbidity, mouse weight was

measured. Experiments were conducted in accordance with the

protocol approved by the Institutional Animal Care and Use

Committee of the Pennsylvania State University (permit

number 44512).

Statistical analysis was performed using R [41]. For each

mouse, we calculated total parasite density, total RBC density

and total weight, the cumulative sum of these measures over

time. Plasmodium chabaudi parasites reproduce synchronously

every 24 h, so that integrating across time gives the total number

of parasites produced during that time period. All measurements

of parasite density were log10 transformed prior to analysis. Since

the variance in total parasite density changed systematically with

pABA treatment, we analysed total parasite density using

generalized least-squares (GLS) models with pABA treatment

specified as a variance covariate, following [42]. The temporal

dynamics of infections were analysed using linear mixed effects

(LME) models following [42–44], with day fitted as a factor to

allow for nonlinearity in infection dynamics, individual mouse

fitted as a random effect, a corAR1 autocorrelation structure

fitted to correct for temporal autocorrelation and a variance struc-

ture that accounted for changes in residual variance in parasite

density between days. To tease apart the effect of pABA on the

dynamics of competition, post hoc analysis was performed

using the lsmeans package [45]. The impact of pABA on the

growth rate of the parasite population was similarly analysed.

Since the growth rate of parasite populations in some mice had

slowed by the fifth day, only data from days 3 and 4 were used

for the analysis of initial replication rate. Both GLS and LME

models were fitted using the nlme package [46]. Model simplifica-

tion was performed by sequentially dropping the least significant

term, until all terms were significant. Least significant terms were

identified using likelihood ratio tests, for GLS and LME models,

and F-tests for standard linear regression models.

Three mice received a smaller number of parasites than was

intended and were removed from all analyses (table 1; electronic

supplementary material, figures S1 and S2). All mice in the high

pABA mixed infection treatment eventually succumbed to infec-

tion and day 8 was the last day on which all mice were alive. The

effect of pABA concentration on the magnitude of competitive

suppression was therefore assessed during the period between

days 3 and 8 PI, using data from all treatment groups, and

then again during the period from days 3 to 21 PI, with the

high pABA treatment excluded.
3. Results
(a) Parasite dynamics in single infections
In mice infected with ASpyr alone, pABA supplementation

increased both the growth rate and total size of ASpyr infec-

tions (figure 1; electronic supplementary material, figure S3
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Figure 1. pABA is a limiting resource for ASpyr. Infection dynamics of single infec-
tions of ASpyr in unsupplemented (blue), low (green), medium ( pink) and high
(orange) pABA treatments. Each line represents the dynamics of infection in an
individual mouse. n specifies the number of mice plotted and included in the
analysis. The star represents the number of parasites that were inoculated and
the time at which they were administered; the dot the density of parasites
detected in an instance when parasites were not detected the day before or
after. Inset shows the infection kinetics between days 3 and 4.
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solid circles, total density pABA x2
3 ¼ 22, p , 0.001, growth rate

x2
3 ¼ 16, p ¼ 0.001). ASpyr grew almost twice as fast in the

high pABA treatment as in the unsupplemented treatment.

The kinetics of infections were also altered by pABA treat-

ment (figure 1, parasite density day � pABA x2
54 ¼ 177, p ,

0.001). After their peak, parasite densities declined continu-

ously in the unsupplemented treatment; by contrast, in the

pABA supplemented treatments the density of ASpyr

increased or plateaued during the post-peak phase, causing

a hump in the infection dynamics.
(b) Parasite dynamics in mixed infections
In mice with mixed infections, ASpyr was competitively sup-

pressed by AJ, irrespective of pABA treatment (figure 2;

electronic supplementary material, figure S3). Both the

dynamics and intensity of competition varied with pABA

treatment in the period when all mice were alive (figure 2;

parasite density day � pABA � competition x2
15 ¼ 80, p ,

0.001), though the significance of pABA’s impact on the

intensity of competition, as measured by the change in total

infection size in mixed versus single infections, was sensitive

to the inclusion of a particular mouse (electronic supplemen-

tary material, figure S3 days 3–8, total density pABA �
competition excluding ‘outlier’ x2

3 ¼ 14, p , 0.01; including

‘outlier’ x2
3 ¼ 6:6, p ¼ 0.09). This mouse apparently received

fewer parasites than its treatment-mates (electronic sup-

plementary material, figure S2). AJ did not impact the

initial growth rate of ASpyr (figure 2, inset growth rate
competition x2
3 ¼ 1, p ¼ 0.8) but shortened the time it took

for ASpyr to reach its peak density and reduced the peak’s

magnitude, most markedly in the unsupplemented treatment

(figure 2). ASpyr experienced significant competitive suppres-

sion in the unsupplemented and high pABA treatments

sooner than in the low or medium treatments (day 6 versus

day 7, figure 2). In this initial phase of the infection, competi-

tive suppression was most intense in the high pABA

treatment (electronic supplementary material, figure S3).

The dynamics of competition continued to be impacted

by pABA supplementation in the mice that survived

(figure 2; days 3–21 parasite density, day � pABA � compe-

tition x2
36 ¼ 110, p , 0.001; total density pABA � competition

x2
3 ¼ 5:4, p ¼ 0.07). Between days 7 and 9, when the density

of ASpyr was declining in all treatments, competitive suppres-

sion was strongest in the unsupplemented treatment. ASpyr

was competitively excluded by AJ sooner in the unsupple-

mented treatment than in the supplemented treatments

(figure 2). In the supplemented treatments, the presence of

AJ resulted in the disappearance of the post-peak hump

that was observed in single infections.

The size of AJ infections in mice with mixed infections

was unaffected by pABA supplementation (electronic sup-

plementary material, figure S4, total density days 3–8 pABA

F3,15 ¼ 1.7, p ¼ 0.2, total density days 3–21 F2,11 ¼ 1, p ¼ 0.4).
(c) Virulence of infections
Disease severity was worsened by pABA supplementation,

particularly in singly-infected mice (figure 3). Disease was

more severe in mice with mixed infections of ASpyr and AJ

(figure 3) and especially so in the high pABA treatment,

where all of the mice died (table 1). In the remaining treat-

ments, pABA supplementation worsened anaemia in

singly-infected mice but not mice co-infected with ASpyr

and AJ (figure 3a,b, total RBC density pABA � competition

F2,22 ¼ 6.4, p , 0.01; minimum RBC density; F2,22 ¼ 10,

p,0.001). Mice supplemented with pABA experienced

more acute weight loss, irrespective of whether they were

co-infected (figure 3c,d minimum weight pABA � competition

F2,22 ¼ 2.7, p ¼ 0.09, minimum weight pABA F2,24 ¼ 6, p ,

0.01), but they did not lose more weight overall (total weight
pABA F2,24 ¼ 0.8, p ¼ 0.5).

The trajectory that mice took through ‘disease space’

[47,48] was affected by pABA (figure 4). Plotting time

series data from experimental infections in health by microbe

space helps to illuminate the (changing) relationship between

pathology and pathogen burden and, in particular, the phase

of the infection when the host is recovering [47]. Plasmodium
chabaudi infected mice supplemented with the standard,

high concentration of pABA, take a typical loop through

pathogen-symptom ‘space’: mice initially remain healthy as

parasite densities increase; as parasite densities reach their

peak, mice begin to sicken; eventually, after parasite densities

begin to fall, mice enter a recovery phase characterized by a

reduction in both symptoms and parasite densities (figure 4,

orange line; [48]). In mice infected with ASpyr only pABA sup-

plementation altered the relationship between parasite density

and pathology: mice were more anaemic for a given parasite

density during the first 10 days of infection and subsequen-

tly recovered to baseline red cell densities less rapidly than

did unsupplemented mice (figure 4a). Mice supplemen-

ted with pABA recovered from infection differently from

http://rspb.royalsocietypublishing.org/
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unsupplemented mice (figure 4a), recovering from anaemia

before parasites numbered below 10 million. .Similar patterns

were seen for weight loss (figure 4b). In mixed infections, the

impact of pABA treatment on the trajectories through disease

space was much less pronounced (electronic supplementary

material, figure S5b,d).

4. Discussion
Despite considerable interest in within-host interactions

between parasite strains and their evolutionary consequences

(e.g. [1,7,17,49]), and a slew of studies demonstrating that

within-host competition occurs (e.g. [3–9]), the role of resources

in mediating intraspecific competition has largely been the sub-

ject of speculation. Here, we experimentally demonstrate that

pABA can mediate competition between strains of P. chabaudi,
a biomedically relevant experimental system.

In single infections, pABA supplementation had a positive

but saturating impact on the growth of ASpyr consistent with

its role as a limiting resource for ASpyr [50] (figure 1; electronic

supplementary material, figure S3). As malaria parasites use

pABA for the production of pyrimidines for DNA synthesis

[27], it seems probable that pABA supplementation promotes

the growth of ASpyr by increasing the numbers of offspring

(merozoites) produced rather than reducing their susceptibility

to immunity or the capacity to invade RBCs (in which para-

sites replicate). It is notable that, even in mixed infections,

pABA did not alter the size of AJ infections (electronic sup-

plementary material, figure S4). In several malaria parasite

species, parasites resistant to pyrimethamine, like ASpyr,

require more pABA for growth than drug susceptible
parasites, like AJ, [30,32,51] possibly owing to the reduced

capacity of pyrimethamine resistant parasites to acquire folate

from molecules other than pABA [52]. Our data suggest that

ASpyr and AJ have similarly asymmetrical pABA requirements.

The asymmetrical resource requirements of AJ and ASpyr

could explain why, during the first 8 days of the infection,

ASpyr experienced competitive suppression more intensely in

the high pABA treatment than in the other treatments

(figure 2; electronic supplementary material, figure S3). This

counterintuitive observation mirrors the finding in plant

communities that the intensity of competition increases with

environmental fertility and productivity [53,54]. The within-

host environment of mice supplemented with low or medium

concentrations of pABA may be one in which AJ and ASpyr

weakly interact: pABA concentrations are high enough that

AJ’s use of pABA does not strongly affect ASpyr, but ASpyr

remains primarily limited by pABA. In mice supplemented

with a high concentration of pABA, however, ASpyr is freed

from pABA limitation and may begin to compete with AJ

over access to other resources, such as RBCs, or via immune-

mediated apparent competition, and so competition is more

intense. It is possible that even in the unsupplemented treat-

ment, pABA is not the substrate over which AJ and ASpyr are

directly competing—if, for example, pABA is not at a concen-

tration limiting to AJ in unsupplemented mice. It has been

suggested that there is a threshold population size below

which parasites cannot escape the impact of immune killing

[55]. The performance of ASpyr in unsupplemented mice may

be so poor that its population does not exceed this threshold,

so that it suffers from intense immune-mediated apparent

competition in unsupplemented mice. Of course, both

http://rspb.royalsocietypublishing.org/
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immune-mediated competition and competition for pABA

could be operating simultaneously.

Indeed, our data show that bottom-up and top-down

forces can jointly regulate the population dynamics and

competitive interactions of parasites and that the relative

importance of these regulatory forces can change during

an infection. The dynamics of P. chabaudi infections have

been the focus of much theoretical attention (e.g. [20,55–

62]). While it is generally accepted that the immune

response is responsible for the post-peak control of malaria

infections [20,55,57,63–65], there has been intense debate

about the forces that regulate the dynamics of parasite

populations prior to their clearance. Both RBC availabi-

lity and the immune response have been invoked to

explain the growth rate and peak density of infections

[20,55,57,59]; similarly, differences in the way that strains

interact with the immune response or RBCs have been pro-

posed to explain the dynamics of interstrain competition

[20,59,61]. The hypothesis that RBCs mediate interstrain

competition has gone untested while the role of immune-

mediated apparent competition has received mixed empirical

support [22,23]. Our data represent, to our knowledge, the

first experimental demonstration that resource availability

determines the growth rate, size and timing of peak density

of malaria infections and the intensity of interstrain
competition between parasite strains. These data suggest

that resources may play a vital role in determining the

dynamics of malaria infections prior to the onset of

adaptive immunity, which is responsible for the clearance

of infection. Rarely have models that focus on a single

dimension of the niche been sufficient to explain either

the dynamics or diversity of non-parasitic populations;

given the complexity of the within-host environment it

would be surprising if they sufficed to explain all infection

dynamics. Our work attests to the use of broadening our

conception of the parasite niche beyond the two axes of

target cells and immunity.

That the relationship between parasite burden and dis-

ease changes with pABA supplementation (figure 4),

suggests that resource supply may not only act in concert

with immunity or other resources to govern infection

dynamics, but may also change the nature or role of these

other regulatory factors. Supplementation of pABA causes

an increase in the severity of disease associated with a

given number of parasites in the first 10 days of infection

(tolerance [66]), a qualitative shift in the process of recovery

from infection (figure 4) and a hump in the infection

dynamics in the post-peak period (figure 1), during

which the dynamics of infection are thought to be governed

by the immune system [20,55,57,63–65]. It is unlikely that
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pABA has a direct impact on the host’s response to infec-

tion, since mice do not require it [67] and removing

pABA from the host’s diet has a similar impact on parasite

growth in intact mice as in immune-deficient mice [33].

Instead, by altering parasite traits (i.e. growth rate) to

which the host responds, pABA supplementation could

cause a qualitative change in the host immune or erythro-

poietic response. pABA supplementation may indirectly

cause a switch to a more immunopathologic response.

This hypothesis would account for the increase in virulence

observed with pABA supplementation (figure 3), since the

loss of both weight and RBCs in malaria infection is

caused by the activity of the immunopathologic, TH1

arm of the immune system [65,68]. The possibility that

the availability of a parasite nutrient alters host tolerance

warrants further investigation. Indeed, experimental

manipulations of pABA could be used to learn about the

host-parasite interaction, in addition to parasite-parasite

interactions.

It is tempting to ask whether pABA’s availability might

be manipulated for the promotion of patient health. The
original observations that pABA limited the growth of

malaria parasites led to speculation that putting malaria-

infected patients on dairy-based diets, which contain very

low concentrations of pABA, could be used to limit their

parasitaemia [29,69]. Our data indicates that the success of

such manipulations would depend on infection composition

and/or the dependence of individual strains upon pABA.

Dietary manipulation of pABA may also be used to promote

patient health indirectly, by improving and preserving the

efficacy of antifolate drug treatment. In vitro, the efficacy

of sulfadoxine/pyrimethamine (S/P) drug treatment is

inversely related to the concentration of pABA in the

medium, because pABA competes with sulfadoxine (a

pABA analogue) for its dihydropteroate synthase binding

site [70–72]. Kicska et al. [33] proposed that diets low in

pABA be administered to patients receiving S/P treatment,

to boost S/P’s efficacy. With S/P being the only

drug approved for prophylactic treatment of pregnant

women, and resistance to it prevalent, such an intervention

could be of value.

Manipulations of pABA availability could also play a

role in slowing the evolution of drug resistance, since com-

petitive interactions are at the heart of the process of drug

resistance evolution [15,16] and pABA mediates these com-

petitive interactions. Susceptible pathogens competitively

suppress resistant pathogens, as was observed here; drug

treatment removes these competitors, allowing resistant

parasites to flourish [15]. Reducing the availability of

pABA in the host environment could be used to intensify

the competitive suppression of drug resistant parasites in

the period before susceptible parasites have been cleared

by the drug, reducing the probability that resistant parasites

will survive to emerge once released from competition. It is

intriguing to think that we may have altered competitive

interactions between malaria parasites for years, unwit-

tingly, via our administration of sulfadoxine treatment,

which blocks parasites’ access to pABA. Resource depletion

may be a relatively ‘evolution-proof’ strategy, as compared

to giving a drug that blocks access to a resource, since para-

sites would not be able to employ common resistance

mechanisms such as efflux pumps or target site mutations

to resist it. The extent to which pABA manipulation can be

used to manage resistance will depend on the extent to

which malaria parasites in the field are limited by pABA, a

question open for further investigation.
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